根据中心法则,编码在DNA上的信息要经过转录和翻译,最终生成蛋白质,才能执行生物学功能。与基因、转录、翻译、蛋白质这几个层次所对应的该层次物质的总体,分别称之为基因组(genome),转录组(transcriptome),翻译组(translatome),蛋白质组(proteome)。研究这些组的学科,就是基因组学、转录组学、翻译组学、蛋白质组学。
简单来说,一切与翻译过程相关的东西,都是我们要研究的,包括但不限于:mRNA, tRNA, microRNA, 核糖体,新生肽链等。我们不仅研究这些物质的种类与丰度,也研究它们的动态与动力学性质,最终落实到它们所担负的生物学功能。见下面的总览图。
翻译是生物信息组学层次传递的重要层次,连接着转录组和蛋白质组。众多研究发现,翻译并不是简单地把mRNA的信息原封不动地传递下去,而是对信息广泛而精细的重新调制的过程,是幅度最大的调控步骤(Schwanhäusser et al., Nature 2011)。翻译控制对许多细胞生化过程至关重要,如翻译速度会决定蛋白质的折叠构象,甚至决定蛋白质的定位与功能; 翻译起始效率可以决定蛋白质的产量及其所对应的细胞表型。现已知,翻译控制在生物抗逆、病毒侵袭、肿瘤发生与发展等宏观过程有着紧密的联系。这些研究将对生命运行的规律进行更加深入的阐述。
由于蛋白质必须由翻译过程产生,因此翻译组学是蛋白质组学的直接上游,对蛋白质组学方法的质控、蛋白质的发现等具有不可替代的独立参考价值。此外,翻译组学的研究对生化工程、合成生物学等应用科学也具有直接的指导意义。
According to the Central Dogma, the genetic information encoded in DNA sequences must be transcribed and translated to generate proteins. Proteins carry out the actual biological functions. The totality of the substances in the levels of gene, transcription, translation and proteins are called genome, transcriptome, translatome and proteome, respectively. The discipline field to investigate these totalities are genomics, transcriptomics, translatomics and proteomics.
Everything involved in translation process are investigated in translatomics, involving (but not limited to) mRNA, tRNA, microRNA, ribosomes, nascent polypeptide chains, etc. Translatomics investigates their species, abundances, dynamics and kinetics, and finally reveals their biological functions. See the overview below.
Translation is an essential step of the omics flow, linking transcription and protein. Numerous studies revealed that the translation is not a simple conversion of the mRNA, but rather a ubiquitous and delicated re-modulation of the mRNA information. It is the regulatory step with the greatest amplitude among all regulations (Schwanhäusser et al., Nature 2011). Translational control is crucial for many cellular biochemical process. For exaple, translation elongation speed determines protein folding and the consequent localization and functions; translation initiation efficiency determines the protein production yield and the corresponding cellular phenotypes. It is known that translation is deeply involved in stress response, viral infection, carcinogenesis and cancer progression. These research deepened the view of life.
Since all proteins are synthesized via translation process, translatome is the direct upstream of proteome. Therefore, translatome serves as an irreplaceable and independent reference. Moreover, Translatomics is also insightful for biochemical engineering and synthetic biology.
赵晶,张弓
生命的化学,2017,37(1):70-79.